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Interavalanche correlations in the self-organized critical state
of a multijunction superconducting quantum interference device
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A discrete-time model of a two-dimensional lattice of Josephson juncfiomdtijunction superconducting
quantum interference devi¢8QUID)] equivalent to the Abelian sandpile model with currents as heights was
studied by computer simulation. We use various methods of injection of current into the lattice: similar to the
real experimental conditions and used previously in sandpile simulations, deterministic and stochastic. For
most of these methods the probability density of voltége equivalent of avalanche size distribujiatem-
onstrates a universal power-law behavior commonly accepted as the only indicator of self-organized criticality.
We found that the characteristics specific for each method of injection are interavalanche correlators. They
show quasiperiodic behavigsimilar to the bulk-SQUID effect observed in real experimgfiis deterministic
injection, and ordinary exponential decay for strongly stochastic injedt®t063-651X98)05502-0

PACS numbd(s): 64.60.Lx, 74.50+r

[. INTRODUCTION arbitrarily. In particular, the current might be injected into all
lattice sites simultaneously by very small portions, as in real
The decade-old concept of self-organized criticality experiments. Hence, a natural question arises about variation
(SOQ is a subject of growing interest for investigatésee, of the structure of fluctuations in the SOC state for various
for instance[1-5]). This concept can be applied for descrip- regimes of injection, i.e., about the universal nature of fluc-
tion of a wide range of dissipative dynamical systems. Suchyations.
systems during their evolution come to a critical state thaiote that in most of the papers on SOC only the distribution
reproduces itself in furthgr evolutipn without exact tuning .Offunctions of various quantities that describe a single ava-
external parameters. This state is called the self-organizednche were studiettall them single-avalanche distribution

critical state, differing from the ordinary critical state that fnctiong. However, interavalanche distribution functions

appears, fo_r instance, at phase transitions. Th_e SOC concepby jescribe correlations between guantities in different ava-
is quite universal and can be used in such diverse areas

nches are also very important for system description. In the

science as geophy§|cs, astrophysics, ecenomics, and CO(Q)Zperiments with a real sandpilé] just the interavalanche
densed matter physics.

Surprisingly, in view of such universality, almost all in- fluctuation spectra were studied. The only theoretical paper

formation on SOC has been obtained by computer simula’® know that deals with interavalanche correlatorgl.
the present work we show that the single-avalanche dis-

tion. In condensed matter physics experimental data arg. =~ ) , . ‘
available only for a pile of sanf6]. Naturally, one should tr|b'ut.|on'funqt|ons are nearly' identical for various methods
like to see more interesting physical systems that exhibief injection, i.e., they are universal functions. At the same
SOC. On the other hand, the phenomenon of the critical staf@me the interavalanche correlators differ substantially for
of a hard second-kind superconductor has been known for different methods; while in some cases the correlators decay
long time(see, e.g/7,8]). This critical state arises as a result rapidly when the difference of avalanche numbers increases,
of dynamics of field or current and is self-reproducing. Fromin other cases they oscillate revealing a very slow decay. The
that point it is very similar to SOC systems; however, in thelatter fact was established {i10] but was not studied in
conventional theory the critical state does not possess a fludetail.
tuation spectrum that is inherent to SOC, due to the continuTherefore we found that the interavalanche correladoraot
ous nature of equations describing the critical state. possess the property of universality. This situation is very
It was shown in[9] that the equations for currents in a similar to that taking place in physics of second-kind phase
two-dimensional discrete Josephson lattice with open boundransitions, where the static single-time correlators behave

aries are identical to those of the twojdi.mensional Sandp”aniversa”y’ while the dynamic ones are very sensitive to sys-
model and, hence, the former system is in the SOC state. lfgm peculiarities.

this case we have an Abelian model with currents as heightshe present work consists of four sections. In Sec. Il we

However, there is a substantial difference between droppingerive the principal equations for various models of Joseph-
of sand to a pile and injection of current in a superconductorsg arrays, In particular, for a two-dimensional (2D) multi-
either n real or in model experiment. In the sandpile mOdeﬁunction superconducting quantum interference device(S-
all grains are of the same size, so that the system behaves fJID) we show that they correspond to the algorithm of
3roc ellgéarinte:)utgrr]n atolgéeAilﬁoé at”eleaé?tthgrn% g::ﬁ%oﬁuclﬂ lE)esandpile automaton. In Sec. lll we study numerically the
PP y P pre, y ysingle-avalanche probability densities and the interava-

deterministic rule. On the contrary, the injection current in al h lat f tand volt In Sec. IV
superconductor, being an equivalent of addition of sand,anc € correlators ot current and voitage. Iin Sec. [vV.we sum-

could take any continuous value and could be distributedn@riz€ our results.
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wherej %), i%®. |, are the injection current densities. A
similar model was described earlier[ih2,13.

Now let us write the 3D generalization of Eq8) and(3).
The granular superconductor is now a cubic lattice with the
constanta and rib section sizé€X|1, the junctions are still in

Il. THE MODEL _the middl_e of _the _ribs. The equation for the phase difference
in the x direction is

In this section we describe the 2D and 3D models of a
granular superconductdidosephson junction arradJA)] «
and the 2D model of multijjunction SQUIDMJS) [9]. For . _.  « b0 deniipmk
each of the models we derive the equations for gaugej-csm((’D”“’Zm"‘)Jr 21pg dt
invariant phase difference(t). For this derivation we use
the resistive model of the Josephson juncfibh], where the o

l

FIG. 1. The 2D Josephson junction array.

; =— R (@) +ird]
density of transport current depends ¢(t) as gn22q "tY2mk ¢ n+1/2mk
L. ¢O d(P(t) Qbo
j=lcsinme(t)]+ m BT &Y = m(@ﬁu/zmﬂ,ﬁ Pns1zm-1kt Pns 12mk 1
where j. is the density of critical currentgg is the flux +‘»D)rfu+1/2m,kfl_4(P)r§+ll2,m,k+(Px,erl/Z,k_ ‘P%,mflIZk

guantum, ancb, is the surface resistivity of the junction. y y ,
Further, for the MJS model, making some suggestions | ®n+1m-12k~ Pn+1m+ 12k T Pnm ke 172
that simplify it, we are able to write the equations for junc-
tion currents, identical to the rules of addition and toppling in
the Abelian sandpile model. (4)

z _ .z _z =X, (1)
+‘Pn+1,m,k—1/2 Pn+1mk+1/2 ¢n,m,k—1/2)+1n+1/2,m,k'

The phase differences, m. 124, @ m k- 12 are expressed
in the same way. The operatorRy, 1o;m, R mi:
I-‘ianH,Zm’k are a discrete analog of the operator
—rot rot(e).

A. Josephson junction array and 2D multijunction SQUID

The 2D granular superconductor can be described as
hollow superconducting system which is infinite zndirec-

tion, and its_xy section is_a square Iattic_e with the lattice | this work we study in detail a different form of the
constania (Fig. 1). The Iat.tlce r|bs_ are of sizg th? Joseph- Josephson junction lattice, the 2D multijunction SQUID.
son junctions are placed.m the m|ddI(_a of each rib. The equag,ch 4 SQUID is depicted as two superconducting layers
tions for the gauge-invariant phase difference for such a Sysjbined by Josephson junctions that are placed in the sites of
tem have the form square lattice of sizé X L. The junction sizd <a (Fig. 2.

The Josephson current flows along thaxis.

do? i ) )
%o Z¥n+12m Thus we can write the following equation for the gauge-

jesin( (PﬁJr 1/2,m) +

2mpy  dt invariant phase difference in the junction, ():
®o i
=— R am(@) Hinid $o d¢ ¢ .
2.2 n+1/2m n+1/2m P 0 nm __ 0 - (i)
SI + = A + ,
8mla Je n(‘Pn,m) 27py 16772|27\L n,m(‘P) Jam
S CHp. +en —2¢5
8m2la? n+1/zm+1 n+1/2m-1 n+12m An,m(‘P)z(Pn+1,m+ (Pn—l,m+ ‘»Dn,m+l+‘Pn,m—l_4‘Pn,mv

®

+@h me 12~ Phm- 12t Pht 112~ Phe1me 172 _ _ . _
where\ | is the London penetration depth, or, in the dimen-

+irMom: (2)  sionless form,
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neglect the above mentioned little changé order of 1¥)
in A, n(¢) and thus approximate the phase by stepwise
function

—r o

T
Onm~270nmt 2 9

whereq, , is an integer. Using this approximation we re-
write Eqgs.(7) and(8) in the form

= 5 AN = N =

L4 7

. T do
Znm™— chm((Pn,m) + ﬂ a:

Zn,m:An,m(q)+Fn,mv (10)

®n,m 1
qn,m—lnt( oy +4

FIG. 2. The 2D multijunction SQUID. where Int§) denotes an integer part af

Equations(10) form a complete system which is simpler
than Eq.(5) due to the fact that the phases do not interact.
Let us describe the solution of this simplified system. As a
first step we trace the evolution of the phase in the junction

i b0 J'g)m (ng,mg). We choose as initial condition the situation when
V=2m—, |,= > Fam=——, the injection current for all sites,, ,=K=Int(z,)<z;, and
le 8wl N, le the phases in all sites are

bo 27K\ w 27K
=V7y, 79 (6) ¢nm(0)=arcsi ~ =3~ 2 1—T. (11

_27TP0jc.

. dey,
Vsin( (Pn,m) + 7% = An,m(‘P) + 277":n,mv

HereF, , is the dimensionless injection current. Thenq, m=0 andA, ,(q)=0. o _
The paramete¥ that appears in Eq6) is the principal Further_, let us suppose that the current is |njected_ by in-

characteristic of the SQUID. For instance, in the cisel  (€ger portiong“quanta”), i.e., Fnm and hencez, , are in-

the single-junction SQUID has a lardef the order ofv)  t€ger numbers. Adding in the_ sitad,mp) a single unit cur-

number of metastable states for its energy, and this fact lead§nt (Fny,m,=K+1), we obtain

to such phenomena as the quantization of magnetic flux and

hysteresig11]. In our model of MJS we consider this case Zno,moﬂzno,m()*l-

solely.

(12

The current now exceeds the critical value, so
den, m,/dt>0 . The solution fore, n can be found from
_ the first Eq.(10). The remarkable property of this solution is
It would be too complicated to solve the syst¢@) ex-  that the phase is almost constant during the period
actly, so we make some simplifications and describe the ap-= 5 77 /\2[(K+1)/z.— 1], and then changes abruptly by
proximate solution in terms of dimensionless current through .. qyring the intervatr,. At the very moment of phase jump

B. Principal equations

the junctionz,, ,: we have
] 7 dop, \Y) +
Znym:ZCS”"((Pnym)"_ % dl’;m, ZCZE. (7) qn,qun,m 11
An,m_’An,m_4v
In this notation the syster6) looks like (13
An:l,m_’Antl,m"_l,
1
Zn,m(‘P)z ZAn,m((P)"_Fn,m- )] An,mtlﬁAn,mil"_ 1.

L o ) Thenz, . is changed in accordance with the rules
Let us simplify Eq.(8), taking into account the properties 0o

of the solution of Eq.(7). The latter is an equation for a
phase in a single Josephson junction. Egp,<z., we see
that the phase is a constaukg/dt=0). Forz, ,>z., how-
ever, whenv>1 and|z, ,—z.|<z., Eq.(7) has a solution
¢(t) which undergoes only a little change during the time
interval T and then varies by 2 during the timer,<T. We

Zn0 ,mo‘>zno my 4,
Znot 1,m0‘>znot 1,m0+ 1, (14

Zn0 My 1—>Zno,m0t1+ 1.
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The rules(12), (14) for Zn,,m, are completely identical to 2y 1(K+1) =23 1(K) + 0(z5 1(K) — 2) + 0(z1 A K) — 2.)
the rules of addition and toppling in the Abelian sandpile
model [1,14], thereby demonstrating that our system is a —40(z1,1(K) — )+ £1.4(K),
SOC one.
When turning to the whole lattice the following difficulty  Z2m(K*1)=21m(K) + 0(2o (k) = Ze)+ 021 1(K) — Zc)
appears. The tim& of small phase change varies from site +0(2y 1 (K) — Zo) — 46(z4 m(K) — 22)
to site, and changes also when a jump of phase occurs in any ' '
nearest site during this time interval. As Eq$0) take this + &1 m(K). (19

change into account, they remain still too complicated to . .
analyze. Let us make one more simplification. We suppose "€ closed or reflecting boundary conditions mean that
that T is the same for all sites, thus being able to introduce 4"€ current cannot leave the system, i.e., that the lattice is

discrete timet, =Tk in our system. We hope that such g Surrounded by an insulator. Equatioi36) in this case

simplified model still describes the physical properties of the“hange to

system correctly. Now we can transform EG0) in equa- _ . .
tions that include only,, , andz,, - 214kt 1)=21,4(K) + 0(Z,1(K) = 20) + 621, 4K) = 2c)

—20(z1,1(K) = Zg) + £1.4(K). (20)
Qn,m(k+1)ZQn,m(k)+a(zn,m(k)_zc)y . ) )
(15 The current is conserved in such a system, while for open
Zy m(K)=Ap m(Q(K)+Fpp m(K), boundary conditions it is conserved only in the extended

lattice O0<(n, m)<N+1.

then forz, ,, we have
D. Electrodynamics of the system

Znm(K+1) =2 m(K) + A, m0(2(K) = Zo) + €0 m(k) Equations(16) that describe the dynamics of current in
=2, m(K) + 0(Zns 1 m(K) = Z0) + 0(Z1— 1 m(K) — 2¢) our lattice can be written in a brief form:

+ 0(Zn mi1(K) =2+ 0(Zy m-1(K)—20)  (16) Znm(K+1) =2, (k) + A W (2(K)) + & m(K), (21)
—40(z0,m(K) = 26)+ &0 m(K), V(@)= 0(z=zc).
€ (K =Fp o(k+1)—F, o(K). In this section we consider the physical meaning and pos-

sible modifications of¥(z). First, let us write the depen-

The behavior of our system is determined also by theéf€nce of junction voltage on the phase in it:

statistical properties of nois§, , (see Sec. Il beloyand by bo @
boundary conditions which play an important role in SOC U, m(t)=— Po 7%nm
problems. ’ 2m ot

(22

When the junction current exceeds the critical value, the
phase changes bym2during a time intervall + 7, and the

In this section we consider the boundary conditions inmean voltage is
relation to the physics of our system. The boundary condi- L s
tions most frequently used in SOC problems are of two I __ %o
kinds: open and closed ones. The open boundaries are real- U”'m(k+1/2)_Tf Unm(Ddt= 23
ized in our system when the whole lattice is shunted by a
normal superconductor with a critical current several order®r, more generally,
of magnitude larger than that of the Josephson junction. This

means that we add the stripes of junctions witim=0,N Uy (Kt 1/2) = — bo

C. Boundary conditions

ty

G(Zn,m(k) - Zc)

+ 1 to the lattice &=(n, m)=<N and set their critical current T
density to infinity: 4
0
z.=o, n,m=0, N+1. a7 :_?[Qn,m(k+1)_Qn,m(k)]- (24)

The current in these junctions always increases, thus it Thus, using Eq(16), we can write
cannot return to the sublatticesin,m=<N . In other words,
the current is able to leave the lattice, thus realizing the open T
boundary conditions. The conditidd7) is equivalent to Znm(K+1) = Zp m(k) = — ¢_0An,m(u(k+ 1/2)+ én m(K).

(25)
Z,m=0, nm=0, N+1 (19
Comparing Egs(25) and(21) we see that

that was used commonly in SOC problems. é

Taking Eq.(17) into account, we can modify E¢16) for _ %o
boundary sites, e.g(1,1) and (1m): Unm(k+1/2)= T ¥ 2o m(k), (26)
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i.e., ¥(2) has the physical meaning of the current-voltage 1 0K
characteristic(CVC) of a junction. Consider now some uj =N Hzp m(K)—Z0). (31
modifications of CVC. k=Kj_1+1 nm

(1) In Eq. (21) we consider only the positive threshold of . . . )
CVC because of the fact that the current values are alway-ls_he quantityNu; s the total avalanche voltage and it corre

. : . _>Sponds to the total number of topplings in ttik avalanche.
near this threshold. The expression for CVC that takes into In Eqs. (30) and (31) we defined two random variables

account both thresholds is . )
that characterize our process. All our calculations are per-

WV (2)=60(z—2.)— 0(—2—2,). (27)  formed after reaching the stationary critical state. For such a
state the following quantities are defined.
(2) Equation(27) is written for zero temperature. To in- (1) Single-avalanche probability densities of current and

troduce the temperature in an accurate way would be a rathepltage:
complicated task; however, one can do this phenomenologi-

cally, being guided by simple physical grounds that a non- p(2)=(8(z—z))), (32)
zero temperature leads to an exponential smearing of thresh-
old in the CVC, as for a single Josephson junctfdr]. p(u)=(s(u—u)).

Following the classical idea of Anderson and Kjidb|, we
replaced(z(k) — z.) by Fermi step:

1 D1)=(z,2j,+)— ()%

Lo~ (zmz)lz] D) = (U b )~ (U)?.

(3) Spectral densities of current and voltage:

(2) Interavalanche correlators of current and voltage:

f(z)= (33

Zp<k1<z, (29

where z, is proportional to the temperature. Théh(z) -
=f(z) for one threshold, an®& (z)=f(z) — f(—2) for two _  iomyi
ones. sz(v>—21:2_m D,(j)e™"*™,
One can obtain some other SOC models by writing Eqg. (34)
(21) in a more general form and modifying(z): * o
X Suv)=2 2 Dy(j)e *™.
Zn,m(k+1):Zn,m(k)+An,m(‘y(z(k)))+§n,m(k): I==

Ag,m:b{qr(zn+l,m)+\P(anl,m)+\P(Zn,m+1)+\l’(zn,m—1)} For real calculations we use the common formuytes)

— 4y . 29 N;
(Zn,m) ( ) p(zj):_M\JN’
Then, for ¥(z)=%z6(z—z;) and b=1 we obtain the
model that was used ifiL6], and for 0<b<1 we have a

Zi=2,—(2),
nonconservative model used [ih7,18|. i=%=(2)
M—j
1 -~
. COMPUTER SIMULATION RESULTS D,(j)= M=) > [2},Zj,+i];
“Jijo=1
All our simulations were performed for the square lattice
of size LXL (L=23), open boundary conditions, arg 2 )
=4.5,7,=0. We made our simulations in the following way. Sdv)= 1 (12.0%),
First, an initial configuration with random noninteggr, (35
varying from O toz. is prepared. M
Next, in Eq.(16) we takeé, ,# 0, according to one of the Z,= E Eje*i%vj,
=1

methods described below, thus launching the dynamic pro-
cess. Until the dynamics stofse., the system reaches a

metastable statewe keepé, ,=0. Then we add a nonzero WhereN; is the number of values of belonging to the
&, m again and so on. ’ interval (z;=W/2), M is the total number of points in series

We call “an avalanche” the process of single addition % Yj» @nd the angle brackets denote an ensemble average.
and further relaxation of the system. For every avalanche thEXPressions for voltage are written in the same way. Note

following quantities are definedl) that Egs.(33)—(35) for ergodic systems lead to identical re-
sults whenj <M. In our calculations this condition is always
1 valid.
z :N;n Zn,m(Kj), (30) In the present work we consider four different methods of
’ injection of current into the lattice.
where N=L2 and k; is the final moment of th§th ava- (1) An injection of a unit current into an arbitrary lattice

lanche. The quantitil z is the total current in a lattice and it site:
corresponds to the total mass of a pile in the Abelian sand- -5 5 36
pile model(see, e.g.[10]). (2) &n,m= Sn,nyOm,my» (36)
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FIG. 3. Results for the first method of injectio@) probability J
densities of currenp(z) and voltagep(u) [the curve represents .
p(2) gep(u) [ P FIG. 4. Results for the second method of injecti@®; (b) the

dependence(u)~u~ 11, (b) power spectra of currer,(») and R -
voltageS,(»), () voltage correlatoD ,(j) . same as in Fig. 3(c) correlator of currenD,(j).

: . . ._frequencyrv=1/N, thus indicating a quasiperiodic process in
where @0,m0_) IS _the ra_ndomly chosen '.S'te' This F“eth"d 'S the system. The correlat®,(j) also demonstrates a quasi-
widely used in simulations of the Abelian sandpile model.periodic behavior
The results of our calculati.o'ns are presented in Fig. 3. It should be nc;ted that in casé® and (2) we used both

We see that the probablllty den'sny for. vol_tageu) that . the random initial configuration described above and the
corresponds to the cluster-size distribution in the sandpﬂeempty lattice” configuration with allz, =0 that is com

_ 1 n,m— -

problem demonstrates standard power law behavior. Thﬁ]on for simulations of the Abelian sandpile model. For both
spectrum of current shows a Lorenz-like dependence, "eConfigurations the results were the same
corresponding cprrelator decays equnentially. The voltage Besides methodél) and (2) used earliér in the Abelian
spegtrum IS of different type. The main power concentrate%andpile model, we consider some other methods of current
within the high-frequency range, which corresponds to antl-injection appearing naturally in our problem

?Orrre”l?ﬁons 'rD“éJ)’ crliiarcljybs?en in Fllg-(ﬁi)ri [:Ne note ttu?th (3) Deterministic injection of the same arbitrary value of
or all the cases described beldy(v) also increases at hig current into all lattice sites:
frequency]
(2) Deterministic injection of a unit current into the center _
Enm=P. (38)

of the lattice:

_ In the methods described above a single unit current was
Enm= 5nv“c5mvmc’ (37) added to the system after every avalanche. Now the total
amount of current added at one step is equalmi.e., it is
where f1.,m;) is the central site. This method is known as arbitrary. Such a method of injection is typical for experi-
the “central seed modelT10]. The results are presented in ments with real physical systems. Results fo=0.002
Fig. 4. The probability densities of current and voltage dem{Np~1) are shown in Fig. 5. It is important that the initial
onstrate the same behavior as in the previous case. At tHattice configuration is random. We see that the behavior of
same time the weak peaks appearSj{r) and S,(v) at  single-avalanche probability densities is the same as in cases
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FIG. 5. Results for the third method of injection= 0.002:(a),
(b) the same as in Fig. 3c) main graph: correlator of current
D,(j); inset: fragment of series of current.
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FIG. 6. The same as in Fig. 5 but fpe=0.02.

M — 0

1 M
M2 D) — 0.

800

(40)

(1) and(2). Meanwhile, the spectral densities of current and

voltage show pronounced peaks at frequeneyp. The cor-  An oscillating correlator satisfies the latter condition and
relatorD,(j) also manifests the presence of a noisy periodigherefore our system possesses a first order ergodicity. How-

process with the perioi~p~*. At the same time we cannot ever, time and ensemble averages for correlators are identical
see any periodicity in the series itself due to large amplitudenly when
of noise.

Figure 6 displays the same case but wik 0.02 (the
total amount of injected current is about)1The periodicity
with T~p~! is more distinct. We observed in our simula-

M— oo
— 0.

1 M
M2, D20

(41)

tions that the process is more periodic also in the case of
“smooth” initial configuration, i.e., when the range of initial
current values is taken to be less than (0z.). This fact is

a subject of further study. (4) An injection of currentp into every of R randomly
Thus the correlators in our system oscillafégs. 5c), chosen sites, whef®=(1—c)N. This is equivalent to a ran-

6(c)] without any detectable decay. Such a case is a non T ; ) S
trivial one regarding its ergodicity. It can be shoy20] that dom injection into all sites with the distribution

P(§)=(1-c)é(§—p)+cd(é),

The condition(41) is not valid for oscillating correlator
without decay. Hence, we have only an ergodicity of first
order.

(42

1 M M—o

M 4~ (2

=1

(399 and(¢)=(1-c)p . Note that method3) is the special case
of method(4) at c=0. The results forc=1/2 andp=1/(1
—c)N are shown in Fig. 7. We see that for stochastic injec-

when tion the periodic behavior of the system is suppressed by
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lanches. In the present work we study interavalanche correla-
@ tors of both the lattice-averaged current in the final moment

0] o of an avalanche and the lattice-averaged total voltage in an
avalanche. We consider various methods of current injection,
both used earlier in the Abelian sandpile problem as well as
similar to experimental ones. The results can be summarized
as follows.

(1) Single-avalanche probability densities for currp(it)
and voltagep(u) are nearly identical for all the injection
methods we consider, i.e., they are universal functions. Since
the power-law behavior op(u) is known as the principal
criterion of self-organized criticality, our system demon-
strates self-organization in most of the cases considered.

(2) For different injection methods interavalanche correla-
tors behave quite differently. For more or less deterministic
injection the system exhibits a quasiperiodic behavior. In
fact, our multijunction SQUID works like a single dc
 0s) 4] SQUID. Such a phenomenon was observed experimentally

[21] but is still lacking of an adequate description. For
strongly stochastic injection, corresponding, for example, to
the random seed model in the sandpile problem, an ordinary
L5 ' ‘ , . . . . exponential decay of correlators is found.

104103 107 107 04103 102 10t (3) For the voltage, which is an equivalent of the total
v v number of topplings in an avalanche, we observe negative

FIG. 7. Results for the fourth method of injection=0.5, p correlations for neighboring avalanches.

=1/N(1-c).
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