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Interavalanche correlations in the self-organized critical state
of a multijunction superconducting quantum interference device

S. L. Ginzburg, M. A. Pustovoit, and N. E. Savitskaya
Petersburg Nuclear Physics Institute, Gatchina, Leningrad District 188350, Russia

~Received 28 February 1997; revised manuscript received 26 September 1997!

A discrete-time model of a two-dimensional lattice of Josephson junctions@multijunction superconducting
quantum interference device~SQUID!# equivalent to the Abelian sandpile model with currents as heights was
studied by computer simulation. We use various methods of injection of current into the lattice: similar to the
real experimental conditions and used previously in sandpile simulations, deterministic and stochastic. For
most of these methods the probability density of voltage~an equivalent of avalanche size distribution! dem-
onstrates a universal power-law behavior commonly accepted as the only indicator of self-organized criticality.
We found that the characteristics specific for each method of injection are interavalanche correlators. They
show quasiperiodic behavior~similar to the bulk-SQUID effect observed in real experiments! for deterministic
injection, and ordinary exponential decay for strongly stochastic injection.@S1063-651X~98!05502-0#

PACS number~s!: 64.60.Lx, 74.50.1r
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I. INTRODUCTION

The decade-old concept of self-organized critical
~SOC! is a subject of growing interest for investigators~see,
for instance,@1–5#!. This concept can be applied for descri
tion of a wide range of dissipative dynamical systems. S
systems during their evolution come to a critical state t
reproduces itself in further evolution without exact tuning
external parameters. This state is called the self-organ
critical state, differing from the ordinary critical state th
appears, for instance, at phase transitions. The SOC con
is quite universal and can be used in such diverse area
science as geophysics, astrophysics, economics, and
densed matter physics.

Surprisingly, in view of such universality, almost all in
formation on SOC has been obtained by computer sim
tion. In condensed matter physics experimental data
available only for a pile of sand@6#. Naturally, one should
like to see more interesting physical systems that exh
SOC. On the other hand, the phenomenon of the critical s
of a hard second-kind superconductor has been known f
long time~see, e.g.,@7,8#!. This critical state arises as a resu
of dynamics of field or current and is self-reproducing. Fro
that point it is very similar to SOC systems; however, in t
conventional theory the critical state does not possess a
tuation spectrum that is inherent to SOC, due to the cont
ous nature of equations describing the critical state.

It was shown in@9# that the equations for currents in
two-dimensional discrete Josephson lattice with open bou
aries are identical to those of the two-dimensional sand
model and, hence, the former system is in the SOC state
this case we have an Abelian model with currents as heig
However, there is a substantial difference between dropp
of sand to a pile and injection of current in a superconduc
either in real or in model experiment. In the sandpile mo
all grains are of the same size, so that the system behav
a cellular automaton. Also, at least one grain could
dropped into any place in a pile, either by random or
deterministic rule. On the contrary, the injection current in
superconductor, being an equivalent of addition of sa
could take any continuous value and could be distribu
571063-651X/98/57~2!/1319~8!/$15.00
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arbitrarily. In particular, the current might be injected into a
lattice sites simultaneously by very small portions, as in r
experiments. Hence, a natural question arises about varia
of the structure of fluctuations in the SOC state for vario
regimes of injection, i.e., about the universal nature of flu
tuations.
Note that in most of the papers on SOC only the distribut
functions of various quantities that describe a single a
lanche were studied~call them single-avalanche distributio
functions!. However, interavalanche distribution function
that describe correlations between quantities in different a
lanches are also very important for system description. In
experiments with a real sandpile@6# just the interavalanche
fluctuation spectra were studied. The only theoretical pa
we know that deals with interavalanche correlators is@10#.
In the present work we show that the single-avalanche
tribution functions are nearly identical for various metho
of injection, i.e., they are universal functions. At the sam
time the interavalanche correlators differ substantially
different methods; while in some cases the correlators de
rapidly when the difference of avalanche numbers increa
in other cases they oscillate revealing a very slow decay.
latter fact was established in@10# but was not studied in
detail.
Therefore we found that the interavalanche correlatorsdo not
possess the property of universality. This situation is v
similar to that taking place in physics of second-kind pha
transitions, where the static single-time correlators beha
universally, while the dynamic ones are very sensitive to s
tem peculiarities.
The present work consists of four sections. In Sec. II
derive the principal equations for various models of Jose
son arrays. In particular, for a two-dimensional (2D) mult
junction superconducting quantum interference device
QUID) we show that they correspond to the algorithm
sandpile automaton. In Sec. III we study numerically t
single-avalanche probability densities and the interav
lanche correlators of current and voltage. In Sec. IV we su
marize our results.
1319 © 1998 The American Physical Society
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II. THE MODEL

In this section we describe the 2D and 3D models o
granular superconductor@Josephson junction array~JJA!#
and the 2D model of multijunction SQUID~MJS! @9#. For
each of the models we derive the equations for gau
invariant phase differencew(t). For this derivation we use
the resistive model of the Josephson junction@11#, where the
density of transport current depends onw(t) as

j 5 j csin@w~ t !#1
f0

2pr0

dw~ t !

dt
, ~1!

where j c is the density of critical current,f0 is the flux
quantum, andr0 is the surface resistivity of the junction.

Further, for the MJS model, making some suggesti
that simplify it, we are able to write the equations for jun
tion currents, identical to the rules of addition and toppling
the Abelian sandpile model.

A. Josephson junction array and 2D multijunction SQUID

The 2D granular superconductor can be described a
hollow superconducting system which is infinite inz direc-
tion, and itsxy section is a square lattice with the lattic
constanta ~Fig. 1!. The lattice ribs are of sizel ; the Joseph-
son junctions are placed in the middle of each rib. The eq
tions for the gauge-invariant phase difference for such a
tem have the form

j csin~wn11/2,m
x !1

f0

2pr0

dwn11/2,m
x

dt

5
f0

8p2la2
Rn11/2,m

x ~w!1 j n11/2,m
x,~ i !

5
f0

8p2la2
~wn11/2,m11

x 1wn11/2,m21
x 22wn11/2,m

x

1wn,m11/2
y 2wn,m21/2

y 1wn11,m21/2
y 2wn11,m11/2

y !

1 j n11/2,m
x,~ i ! , ~2!

FIG. 1. The 2D Josephson junction array.
a
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j csin~wn,m11/2
y !1

f0

2pr0

dwn,m11/2
y

dt

5
f0

8p2la2
Rn,m11/2

y ~w!1 j n,m11/2
y,~ i !

5
f0

8p2la2
~wn21,m11/2

y 1wn11,m11/2
y 22wn,m11/2

y

1wn21/2,m11
x 2wn11/2,m11

x 1wn11/2,m
x 2wn21/2,m

x !

1 j n,m11/2
y,~ i ! , ~3!

where j n11/2,m
x,(i ) , j n,m11/2

y,(i ) are the injection current densities.
similar model was described earlier in@12,13#.

Now let us write the 3D generalization of Eqs.~2! and~3!.
The granular superconductor is now a cubic lattice with
constanta and rib section sizel 3 l , the junctions are still in
the middle of the ribs. The equation for the phase differen
in the x direction is

j csin~wn11/2,m,k
x !1

f0

2pr0

dwn11/2,m,k
x

dt

5
f0

8p2l 2a
Rn11/2,m,k

x ~w!1 j n11/2,m,k
x,~ i !

5
f0

8p2l 2a
~wn11/2,m11,k

x 1wn11/2,m21,k
x 1wn11/2,m,k11

x

1wn11/2,m,k21
x 24wn11/2,m,k

x 1wn,m11/2,k
y 2wn,m21/2,k

y

1wn11,m21/2,k
y 2wn11,m11/2,k

y 1wn,m,k11/2
z

1wn11,m,k21/2
z 2wn11,m,k11/2

z 2wn,m,k21/2
z !1 j n11/2,m,k

x,~ i ! .

~4!

The phase differenceswn,m11/2,k
y , wn,m,k11/2

z are expressed
in the same way. The operatorsRn11/2,m

x , Rn,m11/2
y ,

Rn11/2,m,k
x are a discrete analog of the operat

2rot rot(w).
In this work we study in detail a different form of th

Josephson junction lattice, the 2D multijunction SQUI
Such a SQUID is depicted as two superconducting lay
joined by Josephson junctions that are placed in the site
square lattice of sizeL3L. The junction sizel !a ~Fig. 2!.
The Josephson current flows along thez axis.

Thus we can write the following equation for the gaug
invariant phase difference in the junction (n,m):

j csin~wn,m!1
f0

2pr0

]wn,m

]t
5

f0

16p2l 2lL

Dn,m~w!1 j n,m
~ i ! ,

Dn,m~w!5wn11,m1wn21,m1wn,m111wn,m2124wn,m ,
~5!

wherelL is the London penetration depth, or, in the dime
sionless form,
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57 1321INTERAVALANCHE CORRELATIONS IN THE SELF- . . .
Vsin~wn,m!1t
dwn,m

dt
5Dn,m~w!12pFn,m ,

V52p
j c

j w
, j w5

f0

8p l 2lL

, Fn,m5
j n,m
~ i !

j w
,

t5Vt0 , t05
f0

2pr0 j c
. ~6!

HereFn,m is the dimensionless injection current.
The parameterV that appears in Eq.~6! is the principal

characteristic of the SQUID. For instance, in the caseV@1
the single-junction SQUID has a large~of the order ofV)
number of metastable states for its energy, and this fact le
to such phenomena as the quantization of magnetic flux
hysteresis@11#. In our model of MJS we consider this cas
solely.

B. Principal equations

It would be too complicated to solve the system~6! ex-
actly, so we make some simplifications and describe the
proximate solution in terms of dimensionless current throu
the junctionzn,m :

zn,m5zcsin~wn,m!1
t

2p

dwn,m

dt
, zc5

V

2p
. ~7!

In this notation the system~6! looks like

zn,m~w!5
1

2p
Dn,m~w!1Fn,m . ~8!

Let us simplify Eq.~8!, taking into account the propertie
of the solution of Eq.~7!. The latter is an equation for
phase in a single Josephson junction. Forzn,m<zc , we see
that the phase is a constant (dw/dt50). Forzn,m.zc , how-
ever, whenV@1 anduzn,m2zcu!zc , Eq. ~7! has a solution
w(t) which undergoes only a little change during the tim
intervalT and then varies by 2p during the timet0!T. We

FIG. 2. The 2D multijunction SQUID.
ds
nd

p-
h

neglect the above mentioned little change~of order of 1/V)
in Dn,m(w) and thus approximate the phase by stepw
function

wn,m'2pqn,m1
p

2
, ~9!

where qn,m is an integer. Using this approximation we r
write Eqs.~7! and ~8! in the form

zn,m5zcsin~wn,m!1
t

2p

dw

dt
,

zn,m5Dn,m~q!1Fn,m , ~10!

qn,m5IntS wn,m

2p
1

1

4D ,

where Int(x) denotes an integer part ofx.
Equations~10! form a complete system which is simple

than Eq.~5! due to the fact that the phases do not intera
Let us describe the solution of this simplified system. As
first step we trace the evolution of the phase in the junct
(n0 ,m0). We choose as initial condition the situation whe
the injection current for all sitesFn,m5K5Int(zc),zc , and
the phases in all sites are

wn,m~0!5arcsinS 2pK

V D.
p

2
2A2S 12

2pK

V D . ~11!

Thenqn,m50 andDn,m(q)50.
Further, let us suppose that the current is injected by

teger portions~‘‘quanta’’!, i.e., Fn,m and hencezn,m are in-
teger numbers. Adding in the site (n0 ,m0) a single unit cur-
rent (Fn0 ,m0

5K11), we obtain

zn0 ,m0
→zn0 ,m0

11. ~12!

The current now exceeds the critical value,
dwn0 ,m0

/dt.0 . The solution forwn0 ,m0
can be found from

the first Eq.~10!. The remarkable property of this solution
that the phase is almost constant during the periodT
52pt0 /A2@(K11)/zc21#, and then changes abruptly b
2p during the intervalt0. At the very moment of phase jum
we have

qn,m→qn,m11,

Dn,m→Dn,m24,
~13!

Dn61,m→Dn61,m11,

Dn,m61→Dn,m6111.

Thenzn0 ,m0
is changed in accordance with the rules

zn0 ,m0
→zn0 ,m0

24,

zn061,m0
→zn061,m0

11, ~14!

zn0 ,m061→zn0 ,m06111.
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1322 57S. L. GINZBURG, M. A. PUSTOVOIT, AND N. E. SAVITSKAYA
The rules~12!, ~14! for zn0 ,m0
are completely identical to

the rules of addition and toppling in the Abelian sandp
model @1,14#, thereby demonstrating that our system is
SOC one.

When turning to the whole lattice the following difficult
appears. The timeT of small phase change varies from s
to site, and changes also when a jump of phase occurs in
nearest site during this time interval. As Eqs.~10! take this
change into account, they remain still too complicated
analyze. Let us make one more simplification. We supp
thatT is the same for all sites, thus being able to introduc
discrete timetk5Tk in our system. We hope that such
simplified model still describes the physical properties of
system correctly. Now we can transform Eq.~10! in equa-
tions that include onlyqn,m andzn,m :

qn,m~k11!5qn,m~k!1u„zn,m~k!2zc…,
~15!

zn,m~k!5Dn,m„q~k!…1Fn,m~k!,

then forzn,m we have

zn,m~k11!5zn,m~k!1Dn,mu„z~k!2zc…1jn,m~k!

5zn,m~k!1u„zn11,m~k!2zc…1u„zn21,m~k!2zc…

1u„zn,m11~k!2zc…1u„zn,m21~k!2zc… ~16!

24u„zn,m~k!2zc…1jn,m~k!,

jn,m~k!5Fn,m~k11!2Fn,m~k!.

The behavior of our system is determined also by
statistical properties of noisejn,m ~see Sec. III below! and by
boundary conditions which play an important role in SO
problems.

C. Boundary conditions

In this section we consider the boundary conditions
relation to the physics of our system. The boundary con
tions most frequently used in SOC problems are of t
kinds: open and closed ones. The open boundaries are
ized in our system when the whole lattice is shunted b
normal superconductor with a critical current several ord
of magnitude larger than that of the Josephson junction. T
means that we add the stripes of junctions withn,m50,N
11 to the lattice 1<(n, m)<N and set their critical curren
density to infinity:

zc5`, n,m50, N11. ~17!

The current in these junctions always increases, thu
cannot return to the sublattice 1<n,m<N . In other words,
the current is able to leave the lattice, thus realizing the o
boundary conditions. The condition~17! is equivalent to

zn,m50, n,m50, N11 ~18!

that was used commonly in SOC problems.
Taking Eq.~17! into account, we can modify Eq.~16! for

boundary sites, e.g.,~1,1! and (1,m):
ny

o
e
a

e

e

i-
o
al-
a
s
is

it

n

z1,1~k11!5z1,1~k!1u„z2,1~k!2zc…1u„z1,2~k!2zc…

24u„z1,1~k!2zc…1j1,1~k!,

z1,m~k11!5z1,m~k!1u„z2,m~k!2zc…1u„z1,m11~k!2zc…

1u„z1,m21~k!2zc…24u„z1,m~k!2zc…

1j1,m~k!. ~19!

The closed or reflecting boundary conditions mean t
the current cannot leave the system, i.e., that the lattic
surrounded by an insulator. Equations~16! in this case
change to

z1,1~k11!5z1,1~k!1u„z2,1~k!2zc…1u„z1,2~k!2zc…

22u„z1,1~k!2zc…1j1,1~k!. ~20!

The current is conserved in such a system, while for op
boundary conditions it is conserved only in the extend
lattice 0<(n, m)<N11.

D. Electrodynamics of the system

Equations~16! that describe the dynamics of current
our lattice can be written in a brief form:

zn,m~k11!5zn,m~k!1Dn,mC„z~k!…1jn,m~k!,
~21!

C„z~k!…5u~z2zc!.

In this section we consider the physical meaning and p
sible modifications ofC(z). First, let us write the depen
dence of junction voltage on the phase in it:

Un,m~ t !52
f0

2p

]wn,m

]t
. ~22!

When the junction current exceeds the critical value,
phase changes by 2p during a time intervalT1t0, and the
mean voltage is

Un,m~k11/2!5
1

TEtk

tk11
Un,m~ t !dt52

f0

T
~23!

or, more generally,

Un,m~k11/2!52
f0

T
u„zn,m~k!2zc…

52
f0

T
@qn,m~k11!2qn,m~k!#. ~24!

Thus, using Eq.~16!, we can write

zn,m~k11!2zn,m~k!52
T

f0
Dn,m„U~k11/2!…1jn,m~k!.

~25!

Comparing Eqs.~25! and ~21! we see that

Un,m~k11/2!52
f0

T
C„zn,m~k!…, ~26!
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i.e., C(z) has the physical meaning of the current-volta
characteristic~CVC! of a junction. Consider now som
modifications of CVC.

~1! In Eq. ~21! we consider only the positive threshold
CVC because of the fact that the current values are alw
near this threshold. The expression for CVC that takes
account both thresholds is

C~z!5u~z2zc!2u~2z2zc!. ~27!

~2! Equation~27! is written for zero temperature. To in
troduce the temperature in an accurate way would be a ra
complicated task; however, one can do this phenomenol
cally, being guided by simple physical grounds that a n
zero temperature leads to an exponential smearing of thr
old in the CVC, as for a single Josephson junction@11#.
Following the classical idea of Anderson and Kim@15#, we
replaceq„z(k)2zc… by Fermi step:

f ~z!5
1

11exp@2~z2zc!/z0#
,

z0!1!zc ~28!

where z0 is proportional to the temperature. ThenC(z)
5 f (z) for one threshold, andC(z)5 f (z)2 f (2z) for two
ones.

One can obtain some other SOC models by writing E
~21! in a more general form and modifyingC(z):

zn,m~k11!5zn,m~k!1Dn,m
b ~C„z~k!…!1jn,m~k!,

Dn,m
b 5b$C~zn11,m!1C~zn21,m!1C~zn,m11!1C~zn,m21!%

24C~zn,m!. ~29!

Then, for C(z)5 1
4 zu(z2zc) and b51 we obtain the

model that was used in@16#, and for 0,b,1 we have a
nonconservative model used in@17,18#.

III. COMPUTER SIMULATION RESULTS

All our simulations were performed for the square latti
of size L3L (L523), open boundary conditions, andzc
54.5,z050. We made our simulations in the following wa

First, an initial configuration with random nonintegerzn,m
varying from 0 tozc is prepared.

Next, in Eq.~16! we takejn,mÞ0, according to one of the
methods described below, thus launching the dynamic p
cess. Until the dynamics stops~i.e., the system reaches
metastable state!, we keepjn,m50. Then we add a nonzer
jn,m again and so on.

We call ‘‘an avalanche’’ the process of single additio
and further relaxation of the system. For every avalanche
following quantities are defined:~1!

zj5
1

N(
n,m

zn,m~kj !, ~30!

where N5L2 and kj is the final moment of thej th ava-
lanche. The quantityNzj is the total current in a lattice and
corresponds to the total mass of a pile in the Abelian sa
pile model~see, e.g.,@10#!. ~2!
ys
to

er
i-
-
h-

.

o-

e

d-

uj5
1

N (
k5kj 2111

kj

(
n,m

q„zn,m~k!2zc…. ~31!

The quantityNuj is the total avalanche voltage and it corr
sponds to the total number of topplings in thej th avalanche.

In Eqs. ~30! and ~31! we defined two random variable
that characterize our process. All our calculations are p
formed after reaching the stationary critical state. For suc
state the following quantities are defined.

~1! Single-avalanche probability densities of current a
voltage:

r~z!5^d~z2zj !&,
~32!

r~u!5^d~u2uj !&.

~2! Interavalanche correlators of current and voltage:

Dz~ j !5^zj 0
zj 01 j&2^z&2,

~33!

Du~ j !5^uj 0
uj 01 j&2^u&2.

~3! Spectral densities of current and voltage:

Sz~n!52 (
j 52`

`

Dz~ j !e2 i2pn j ,

~34!

Su~n!52 (
j 52`

`

Du~ j !e2 i2pn j .

For real calculations we use the common formulas@19#

r~zj !5
Nj

MW
,

z̃ j5zj2^z&,

Dz~ j !5
1

M2 j (
j 051

M2 j

@ z̃ j 0
z̃ j 01 j #,

Sz~n!5
2

M
^uZnu2&,

~35!

Zn5(
j 51

M

z̃ je
2 i2pn j ,

where Nj is the number of values ofz belonging to the
interval (zj6W/2), M is the total number of points in serie
zj , uj , and the angle brackets denote an ensemble aver
Expressions for voltage are written in the same way. N
that Eqs.~33!–~35! for ergodic systems lead to identical re
sults whenj !M . In our calculations this condition is alway
valid.

In the present work we consider four different methods
injection of current into the lattice.

~1! An injection of a unit current into an arbitrary lattic
site:

jn,m5dn,n0
dm,m0

, ~36!
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1324 57S. L. GINZBURG, M. A. PUSTOVOIT, AND N. E. SAVITSKAYA
where (n0 ,m0) is the randomly chosen site. This method
widely used in simulations of the Abelian sandpile mode
The results of our calculations are presented in Fig. 3.

We see that the probability density for voltager(u) that
corresponds to the cluster-size distribution in the sandp
problem demonstrates standard power-law behavior. T
spectrum of current shows a Lorenz-like dependence, i
corresponding correlator decays exponentially. The volta
spectrum is of different type. The main power concentrat
within the high-frequency range, which corresponds to an
correlations inDu( j ), clearly seen in Fig. 3~c!. @We note that
for all the cases described belowSu(n) also increases at high
frequency.#

~2! Deterministic injection of a unit current into the cente
of the lattice:

jn,m5dn,nc
dm,mc

, ~37!

where (nc ,mc) is the central site. This method is known a
the ‘‘central seed model’’@10#. The results are presented in
Fig. 4. The probability densities of current and voltage dem
onstrate the same behavior as in the previous case. At
same time the weak peaks appear inSz(n) and Su(n) at

FIG. 3. Results for the first method of injection:~a! probability
densities of currentr(z) and voltager(u) @the curve represents
dependencer(u);u21.1#, ~b! power spectra of currentSz(n) and
voltageSu(n), ~c! voltage correlatorDu( j ) .
.

le
e
.,
e
s
i-

-
he

frequencyn51/N, thus indicating a quasiperiodic process i
the system. The correlatorDz( j ) also demonstrates a quasi
periodic behavior.

It should be noted that in cases~1! and ~2! we used both
the random initial configuration described above and t
‘‘empty lattice’’ configuration with allzn,m50 that is com-
mon for simulations of the Abelian sandpile model. For bo
configurations the results were the same.

Besides methods~1! and ~2! used earlier in the Abelian
sandpile model, we consider some other methods of curr
injection appearing naturally in our problem.

~3! Deterministic injection of the same arbitrary value o
current into all lattice sites:

jn,m5p. ~38!

In the methods described above a single unit current w
added to the system after every avalanche. Now the to
amount of current added at one step is equal toNp, i.e., it is
arbitrary. Such a method of injection is typical for exper
ments with real physical systems. Results forp50.002
(Np'1) are shown in Fig. 5. It is important that the initia
lattice configuration is random. We see that the behavior
single-avalanche probability densities is the same as in ca

FIG. 4. Results for the second method of injection:~a!, ~b! the
same as in Fig. 3;~c! correlator of currentDz( j ).
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~1! and~2!. Meanwhile, the spectral densities of current an
voltage show pronounced peaks at frequencyn'p. The cor-
relatorDz( j ) also manifests the presence of a noisy period
process with the periodT'p21. At the same time we canno
see any periodicity in the series itself due to large amplitu
of noise.

Figure 6 displays the same case but withp50.02 ~the
total amount of injected current is about 10!. The periodicity
with T'p21 is more distinct. We observed in our simula
tions that the process is more periodic also in the case
‘‘smooth’’ initial configuration, i.e., when the range of initia
current values is taken to be less than (0 . . .zc). This fact is
a subject of further study.

Thus the correlators in our system oscillate@Figs. 5~c!,
6~c!# without any detectable decay. Such a case is a n
trivial one regarding its ergodicity. It can be shown@20# that

1

M (
j 51

M

zj →
M→`

^z&, ~39!

when

FIG. 5. Results for the third method of injection,p50.002:~a!,
~b! the same as in Fig. 3,~c! main graph: correlator of current
Dz( j ); inset: fragment of series of currentzj .
c

e

of

n-

1

M (
j 51

M

Dz~ j ! →
M→`

0. ~40!

An oscillating correlator satisfies the latter condition an
therefore our system possesses a first order ergodicity. Ho
ever, time and ensemble averages for correlators are ident
only when

1

M (
j 51

M

Dz
2~ j ! →

M→`

0. ~41!

The condition~41! is not valid for oscillating correlator
without decay. Hence, we have only an ergodicity of firs
order.

~4! An injection of currentp into every ofR randomly
chosen sites, whereR5(12c)N. This is equivalent to a ran-
dom injection into all sites with the distribution

P~j!5~12c!d~j2p!1cd~j!, ~42!

and^j&5(12c)p . Note that method~3! is the special case
of method~4! at c50. The results forc51/2 andp51/(1
2c)N are shown in Fig. 7. We see that for stochastic inje
tion the periodic behavior of the system is suppressed

FIG. 6. The same as in Fig. 5 but forp50.02.



w

s

i

a

ela-
ent

an
ion,
l as
ized

ince
l
n-
.
la-
tic
In

c
tally
or
, to
ary

al
tive

ul
M.
rk
lem
er-

f-

ork
cs of
ical
il

1326 57S. L. GINZBURG, M. A. PUSTOVOIT, AND N. E. SAVITSKAYA
noise~note that single-avalanche probability densities sho
the same behavior as in the cases discussed above!.

We conclude that the system behaves quasiperiodically
most of the cases considered, besides the highly stocha
regimes of injection.

IV. SUMMARY

We consider the model of a 2D multijunction SQUID
with discrete time. The equations that describe the dynam
of such a lattice are equivalent, for some regimes of curre
injection, to those of the Abelian sandpile model. This allow
us to consider the dynamics of our system in terms of av

FIG. 7. Results for the fourth method of injection,c50.5, p
51/N(12c).
.

e

in
tic

cs
nt
s
-

lanches. In the present work we study interavalanche corr
tors of both the lattice-averaged current in the final mom
of an avalanche and the lattice-averaged total voltage in
avalanche. We consider various methods of current inject
both used earlier in the Abelian sandpile problem as wel
similar to experimental ones. The results can be summar
as follows.

~1! Single-avalanche probability densities for currentr(z)
and voltager(u) are nearly identical for all the injection
methods we consider, i.e., they are universal functions. S
the power-law behavior ofr(u) is known as the principa
criterion of self-organized criticality, our system demo
strates self-organization in most of the cases considered

~2! For different injection methods interavalanche corre
tors behave quite differently. For more or less determinis
injection the system exhibits a quasiperiodic behavior.
fact, our multijunction SQUID works like a single d
SQUID. Such a phenomenon was observed experimen
@21# but is still lacking of an adequate description. F
strongly stochastic injection, corresponding, for example
the random seed model in the sandpile problem, an ordin
exponential decay of correlators is found.

~3! For the voltage, which is an equivalent of the tot
number of topplings in an avalanche, we observe nega
correlations for neighboring avalanches.
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